3- Models of Quantum Computation

Models of Quantum Computation

Quantum circuit model (Previous semseter)

Adiabatic Quantum Computation

Measurement Based Quantum Computation(MBQC)

Topological Quantum Computation (This semester)

Adiabatic Quantum Computation

Overview of adiabatic quantum computation

Andrew Childs

 $H(t) = \hat{H}(\frac{t}{T}) = \hat{H}(s)$ s=1 $H_0 = H(1)$ then $|\psi(T \longrightarrow \infty)\rangle = |E_0(1)\rangle$ s=0 if $|\psi(0)\rangle = |E_0(0)\rangle$ $H_0 = H(0)$

3-SAT problem

$f(s_1, s_2, s_3, s_4) = (s_1 \lor s_2 \lor s_3) \land (s_2 \lor \overline{s_3} \lor s_4)$

$g(s_1, s_2, s_3, s_4) = (s_1 \lor s_2 \lor s_3) \land (\overline{s_1} \lor \overline{s_2} \lor \overline{s_3})$

 $h(s_1, s_2, s_3, s_4) = (s_1 \lor s_2 \lor s_3) \land (\overline{s_2} \lor \overline{s_3} \lor s_4) \land (s_2 \lor s_3 \lor \overline{s_4}) \land (s_2 \lor \overline{s_4} \lor \overline{s_4})$

 $f(s_1, s_2, s_3, s_4) = (s_1 \lor s_2 \lor s_3) \land (s_2 \lor \overline{s_3} \lor s_4)$

$$H = h_1 + h_2$$

$$h_1 = (1 - Z_1)(1 - Z_2)(1 - Z_3)$$

 $h_2 = (1 - Z_1)(1 + Z_3)(1 - Z_4)$

 $H_1 = (1 - Z_1)(1 - Z_2)(1 - Z_3) + (1 - Z_2)(1 + Z_3)(1 - Z_4)$

$$H_0 = -X_1 - X_2 - X_3 - X_4$$

$H_1 = (1 - Z_1)(1 - Z_2)(1 - Z_3) + (1 - Z_2)(1 + Z_3)(1 - Z_4)$

$$|\psi_0\rangle = |+, +, +, +\rangle$$

 $|\psi_1\rangle = \{ |1,1,1,1\rangle, \dots |-1,1,1,-1\rangle, \dots \}$

 $\tilde{H}(s) = (1-s)H_0 + sH_1$

Measurement Based Quantum Computation (MBQC)

 $CZ|+,+\rangle = \frac{1}{2}(|0,0\rangle + |0,1\rangle + |1,0\rangle - |1,1\rangle)$

CZ =

$$|\phi_{-}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - e^{i\phi}|1))$$

$$|\phi_{+}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\phi}|1))$$

 $|\phi_{+}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\phi}|1\rangle)$

$$|\phi_{-}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - e^{i\phi}|1\rangle)$$

$$|0\rangle = \frac{1}{\sqrt{2}}(|\phi_{+}\rangle + |\phi_{-}\rangle)$$

$$|1\rangle = \frac{1}{\sqrt{2}} e^{-i\phi} (|\phi_{+}\rangle - |\phi_{-}\rangle)$$

$X^m H U_z(\phi_3) X^m H U_z(\phi_2) X^m H U_z(\phi_1)$

$X^{m_3}Z^{m_2}X^{m_1}HU_z((-1)^{m_2}\phi_3)U_x((-1)^{m_1}\phi_2)U_z(\phi_1)$

$U_z(\gamma)U_x(\beta)U_z(\alpha)$

One-way Quantum Computation

Dan Browne^a and Hans Briegel^b

^aDepartments of Materials and Physics, Oxford University, United Kingdom.
 ^bInstitute for Theoretical Physics, University of Innsbruck and Institute for Quantum Optics
 & Quantum Information (IQOQI) of the Austrian Academy of Sciences, Austria.

The one-way quantum computer – a non-network model of quantum computation

Robert Raussendorf, * Daniel E. Browne[†] and Hans J. Briegel[‡] Ludwig-Maximilians-Universität München

October 31, 2018

Topological Quantum Computation (this semester)

With new Microsoft breakthroughs, general purpose quantum computing moves closer to reality

Topological Quantum Computation (this semester)

Gottesmann-Knill Theorem

 $U \in \text{Clifford Gates}$ If $U\sigma_i U^{\dagger} = \sigma_j$

Clifford Gates are generated by

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = \sqrt{Z}$$

Theorem: Any quantum circuit which is generated by Clifford Gates can be efficiently simulated by classical computers.

4- Quantum Hardware

Ion Traps Superconducting qubits

Cold Atoms

QUANTUM COMPUTING

From Linear Algebra to Physical Realizations

Mikio Nakahara and Tetsuo Ohmi

Ion traps (Chapter 13, Nakahara and Ohmi)

State preparation, Readout, single qubit gate Two qubit operation

Superconducting qubits (Chapter 15 of Nakahara and Ohmi)

Cold atoms (Chapter 14 of Nakahara and Ohmi)

Nuclear Spins (Chapter 12 of Nakahara and Ohmi)

5- Fault Tolerant Quantum Computing

A fault tolerant system (Power plant, Google, Dropbox,...)

Critical errors, Redundancy, Cost, Difficulty of diagnosis,...

Fault tolerant quantum computation

Concatenation

Error threshold

A simple code

$$|0\rangle \longrightarrow \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$
$$|1\rangle \longrightarrow \frac{1}{\sqrt{2}}(|000\rangle - |111\rangle)$$

 $|0\rangle \longrightarrow \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$

$$|1\rangle \longrightarrow \frac{1}{\sqrt{2}}(|000\rangle - |111\rangle)$$

Transversal Gates

*CNOT*_{Logical}

Eastin-Knill Theorem

There is no quantum error correcting code for which there is a universal set of transversal gates.

100 Logical qubits — Surpassing classical computers,

Error threshold

100 Logical qubits = Millions of physical qubits

Fault-Tolerant Quantum Computation

Peter W. Shor AT&T Research Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA shor@research.att.com

FAULT-TOLERANT QUANTUM COMPUTATION

JOHN PRESKILL

California Institute of Technology, Pasadena, CA 91125, USA

A Theory of Fault-Tolerant Quantum Computation

Daniel Gottesman*

California Institute of Technology, Pasadena, CA 91125

Computational hardness of preparing ground states

- Entanglement dynamics in chaotic quantum systems
- Entanglement spreading

